Secure, High-Performance Displays for Payment Terminals
Oct 08, 2025Future-proof your payment technology with Anders secure touch displays. From EV chargers to self-service kiosks,…
Read moreIn today's fast-paced world of machine learning, neural networks have become more computationally intensive, making Machine Learning (ML) implementation on embedded systems increasingly challenging. This paper explores a comparative analysis of Anders embedded platforms and third-party accelerators, focusing on the efficiency, performance and cost of deploying the YOLOv5s model - a renowned deep learning model for object detection on embedded platforms.
It compares CPUs, ARM architectures, and AI accelerators including Coral TPU and Hailo-8, offering insights for optimising ML deployments.